Bericht Fehleranalyse Mischer, Magnetventile

Juni 2020

1 Abstract

Dieser Bericht ist Teil der schrittweisen Erarbeitung einer FMEA-Tabelle, für eine Siebträger Espressomaschine. Es werden mögliche Auslöser für Fehlfunktionen aufgeführt, die in der Baugruppe "Mischer" und in den Magnetventilen auftreten können.

2 Abkürzungsverzeichnis

ELSA Einfach Lösbare Steck-Anschlüsse

3 Abbildungsverzeichnis

Tabelle 1: Fehlergründe -	ELSA, Leitungen
0	
	Bauteile Mischer
Tabelle 3: Fehlergründe -	Bauteile Mischer

4 Inhaltsverzeichnis

1 Abstract	2
2 Abkürzungsverzeichnis	3
3 Abbildungsverzeichnis	3
4 Inhaltsverzeichnis	4
5 Aufgabenstellung	5
6 Fehlerquellen – ELSA Steckanschlüsse und Leitungen	5
7 Fehlerquellen – Magnetventile	6
8 Fehlerquellen – Mischer	6
9 Zusammenfassung	8
10 Literaturverzeichnis	9

5 Aufgabenstellung

Zugrunde liegt der Statusbericht und der Hydraulikplan einer sich noch in der Entwicklung befindlichen Siebträger-Espressomaschine, sowie Datenblätter der verwendeten Bauteile. Mit der Maschine soll es möglich sein, den Geschmack des hergestellten Kaffees durch die Änderung von Wassertemperatur, Durchflussrate und Zeitspanne der ersten Benetzung des Kaffeemehls mit Wasser, technisch zu beeinflussen. Damit ist es auch möglich verschieden, auf dem Markt befindliche Siebträger-Espressomaschinen abzubilden.

Die Maschine soll später in unterschiedlichen Modellen umgesetzt werden. Dieser Bericht behandelt den Aufbau und die Funktion des labortechnischen Prototyps und der hydraulisch gleich aufgebauten 'Home' Variante.

Im Rahmen einer Fehleranalyse, sollen in diesem Bericht mögliche Ursachen für Fehlerfunktionen in der Baugruppe "Mischer" und den Magnetventilen aufgelistet werden.

6 Fehlerquellen – ELSA Anschlüsse und Leitungen

Die erste, zu überprüfende Fehlerquelle, sind die Steckverbindungen und der Wasserschläuche, welche die Bauteile verbinden. Magnetventile, Dosierventil, Drossel, Mischer, Temperatursensor und Drucksensor verfügen über "Einfach Lösbare Steck-Anschlüsse" (ELSA). Mögliche Fehler sind nachfolgend aufgeführt.

Tabelle 1: Fehlergründe - ELSA, Leitungen

Bauteil	Fehlermöglichkeit
ELSA	undicht: Nicht ausreichend eingesteckt
	undicht: zu hoher Druck (>20bar)
	undicht: Klemmmechanismus beeinträchtigt durch Ablagerungen
	undicht: Dichtring beschädigt
	undicht: Dichtring verrutscht
	undicht: Riss im Material
	undicht: Einpresshülse/ Kralle defekt
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung
Leitung	Durchflussminderung: geknickt
	Durchflussminderung: gerissen> Wasserverlust
	Durchflussminderung: übermäßig lang
	kann nicht eingesteckt werden: zu kurz
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung

7 Fehlerquellen – Magnetventile

Potentielle Gründe für Fehlfunktionen der Magnetventile sind in der folgenden Tabelle aufgeführt. Sie gelten für alle Magnetventile (Y01-Y10), aus den Baugruppen 'Entschichtung/Boilerbefüllung', 'Brühgruppe' und 'Dampf'.

Tabelle 2: Fehlergründe - Bauteile Mischer

Bauteil	Fehlermöglichkeit
	falsche Stellung: Kabel nicht richtig an SSR angeschlossen> keine
Magnetventil	Bewegung
	falsche Stellung: falsches Magnetventil (öffnend/schließend)
	Platzmangel bei der Montage: Kabel zu lang
	falsche Stellung: Spannung nicht ausreichend
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung

8 Fehlerquellen – Mischer

Nachfolgen werden die potentiellen Fehlermöglichkeiten der Bauteile in der Baugruppe Mischer aufgelistet.

Tabelle 3: Fehlergründe - Bauteile Mischer

Bauteil	Fehlermöglichkeit
Dosierventil	keine Funktion: Falsche Beschaltung (Basisplatine)
	Fehlfunktion: Anschluss Kabelpole vertauscht
	Fehlfunktion: Kabelisolierung beschädigt
	Fehlfunktion: Abschirmung Kabel beschädigt> EMV
	keine Durchflussänderung: Linearmotor bewegt sich nicht
	Zerstörung Elektronik: Zu hohe Temperatur des Wassers (>80°C)
	Wasser in Elektronik: ungünstige Einbaulage (vorzugsweise stehend)
	keine Durchflussänderung: zu hoher Wasserdruck (>8bar)> Linearmotor
	zu schwach
	kein Messergebnis: Sensor defekt (Produktionsfehler)
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung
	Platzmangel bei der Montage: Kabel zu lang
Drossel/Düse	Durchflussminderung: unpassenden Kv-Wert
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung
Mischer	Durchflussminderung: unpassenden Kv-Wert
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung
	Temperaturschwankungen Wasser: ungleichmäßige Mischung durch
	Geometrie
Temperatursensor	kein Messergebnis: Kabel an falscher Stelle auf Basisplatine angeschlossen
	falsches Messergebnis: Anschluss Kabelpole vertauscht
	falsches Messergebnis: Abschirmung Kabel beschädigt> EMV
	kein Messergebnis: Kabelisolierung beschädigt
	Platzmangel beim Einbau: Kabel zu lang

	kein Messergebnis: Referenzspannung zu hoch/niedrig (Basisplatine)
	kein Messergebnis: Fühler zu hoch positioniert> kein Kontakt mit Wasser
	falsches Messergebnis: Umgebungstemperatur <-10°C, oder >60°C (Maschineninnenraum)
	kein Messergebnis: Wasserstemperatur >125°C
	falsches Messergebnis: Verschmutzung/ Ablagerungen/ Verkalkung
	falsches Messergebnis: Messungenauigkeit zu groß
	kein Messergebnis: Sensor defekt (Produktionsfehler)
	Durchflussminderung: unpassenden Kv-Wert
Drucksensor	Kein Messergebnis: Drücke außerhalb Messbereich (0-16bar)
	Kein Messergebnis: zu hohe/niedrige Versorgerspannung (5V +-10%)
	Kein Messergebnis: Kabel nicht richtig an Spannungsmessplatine angeschlossen
	Kein Messergebnis: Isolierung Kabel beschädigt
	Kein Messergebnis: zu hoher Wasserdruck (max. 16-20 bar)
	Kein Messergebnis: Kein Kontakt mit Wasser (Fühler zu hoch positioniert)
	kein Messergebnis: Sensoren vertauscht> falscher Sensor verbaut
	kein Messergebnis: Sensor defekt (Produktionsfehler)
	falsches Messergebnis: Anschluss Kabelpole vertauscht
	falsches Messergebnis: Abschirmung Kabel beschädigt
	falsches Messergebnis: ungünstige Einbaulage (vorzugsweise stehend)
	falsches Messergebnis: Messungenauigkeit zu groß
	falsches Messergebnis: EMV durch andere Kabel
	Platzmangel bei der Montage: Kabel zu lang
	Durchflussminderung: Verschmutzung/ Ablagerungen/ Verkalkung
	Durchflussminderung: unpassenden Kv-Wert

9 Zusammenfassung

Bei einer Fehlfunktion der Espresso-Maschine gilt es, die Quelle des Fehlers zu ermitteln. Die in diesem Bericht aufgelisteten Gründe für Fehlfunktionen der einzelnen Bauteile können helfen, dabei systematisch vorzugehen.

In weiteren Berichten sollen diese auch für die Bauteile der anderen Baugruppen dokumentiert werden.

10 Literaturverzeichnis

Rohnen, Armin: Hydraulikplan Labor und Home

München, Hochschule, Fachbereich Maschinenbau, 2020

Rohnen, Armin: Status Espressomaschine

München, Hochschule, Fachbereich Maschinenbau, 2020

AVS Ing. J.C. Römer GmbH: Katalog Dosierventil D

Königsdorf Wiesen, www.avs-roemer.de

AVS Ing. J.C. Römer GmbH: Datenblatt Drosselvventil (Bez.: RFO-958-P315-6FF-S8)

Königsdorf Wiesen, www.avs-roemer.de, 2018

AVS Ing. J.C. Römer GmbH: Datenblatt Drucksensor (Bez.: IPS-958P3-6FF-04-S8)

Königsdorf Wiesen, www.avs-roemer.de, 2016

AVS Ing. J.C. Römer GmbH: Datenblatt Festdrossel (Bez.: FFO-947P3-6FF-D6-0.80-S8)

Königsdorf Wiesen, www.avs-roemer.de, 2019

AVS Ing. J.C. Römer GmbH: Datenblatt Temperaturfühler in Edelstahlausführung (Bez.: ITS-955P3-6PF-X04-

NTC10-S85)

Königsdorf Wiesen, www.avs-roemer.de, 2019

AVS Ing. J.C. Römer GmbH: Katalog Einfach Lösbarer Steck-Anschluss (ELSA)

Königsdorf Wiesen, www.avs-roemer.de

AVS Ing. J.C. Römer GmbH: Datenblatt Gerade Einschraub Verbindung (Bez.: 951P3-6FF-1/8-S8)

Königsdorf Wiesen, www.avs-roemer.de, 2016